
To be submitted to the International Performance and Dependability Symposium (IPDS) 2002, Washington DC, June 23-26, 2002,

Performability Analysis of Guarded-Operation Duration:
A Successive Model-Translation Approach

Ann T. Tai* William H. Sanderst Leon Alkalaij

IA Tech, Inc.*
Los Angeles, CA 90024

University of Illinois+
Urbana, IL 61801

(310) 474-3568 (217) 333-0345
{a.t.tai,k.tso}Oieee.org whsOcrhc.uiuc.edu

Savio N. C h a d Kam S. TSO*

Jet Propulsion Laboratory3
Pasadena, CA 91109

{lalkalai ,schau}Qjpl.nasa.gov

(818) 354-3309

Abstract

When making an engineering design decision, it is often necessary to consider its implications
on both system performance and dependability. In this paper, we present a performability study
that analyzes the guarded operation duration 4 for onboard software upgrading. In particular,
we define a “performability index” Y that quantifies the extent to which the guarded operation
with a duration q5 reduces the expected total performance degradation. In order to solve for
Y , we propose an approach that translates a design-oriented model into an evaluation-oriented
model that allows us to exploit efficient solution methods, successively closing the gap between
the formulation of Y and its final solution. More specifically, we begin with constructing a
design-oriented model that formulates Y and captures the collective effects on system performa-
bility of both performance overhead of guarded operation and failure behavior of the software
components. We then translate this design-oriented model, through analytic manipulation, into
an evaluation-oriented form that is an aggregate of constituent measures conducive to reward
model solutions. Finally, based on this reward-mapping-enabled intermediate model, we specify
reward structures in the composite base model which is built on three stochastic activity net-
work (SAN) reward models. We describe the successive model-translation approach and show
its feasibility for design-oriented performability modeling.

Keywords: Performability, total performance degradation, duration of guarded operation,
model translation, stochastic activity networks

Submission Category: Regular paper

Acknowledgment: The work reported in this paper was supported in part by NASA Small
Business Innovation Research (SBIR) Contract NAS3-99125.

Corresponding Author: Ann T. Tai, a. t . taiOieee . org

1

http://a.t.tai,k.tso}Oieee.org
http://whsOcrhc.uiuc.edu
http://schau}Qjpl.nasa.gov

1 Introduction

In order to protect an evolvable, distributed embedded system for long-life missions against the
adverse effects of design faults introduced by an onboard software upgrade, a methodology called
guarded software upgrading (GSU) has been developed [l, 21. The GSU methodology is supported
by a message-driven confidence-driven (MDCD) protocol that enables effective and efficient use of
checkpointing and acceptance test techniques for error containment and recovery. More specifically,
the MDCD protocol is responsible for ensuring that the system functions properly after a software
component is replaced by an updated version during a mission, while allowing the updated compo-
nent to interact freely with other components in the system. The period during which the system
is under the escort of the MDCD protocol is called “guarded operation.”

Guarded operation thus permits an upgraded software component to start its service to the
mission in a seamless fashion, and, in the case that the upgraded component is not sufficiently
reliable and thus imposes an unacceptable risk to the mission, ensures that the system will be
safely downgraded back by replacing the upgraded software component with an earlier version. It is
anticipated that sensible use of this escorting process will minimize the expected total performance
degradation which comprises 1) the performance penalty due to design-fault-caused failure, and
2) the performance reduction due to the overhead of the safeguard activities. Accordingly, an
important design parameter is the duration of the guarded operation 4, as the total performance
degradation is directly influenced by the length of the escorting process. In turn, this suggests that
a performability analysis [3, 41 is well-suited for the engineering decision-making.

Performability analysis of this type involves some challenges. First , performability measures
for engineering decision-making should be defined from a system designer’s perspective, which
naturally leads to a design-oriented formulation that may not be directly conducive to the final
solution. Second, such a performability model may cover a broad spectrum of system attributes
with which the system designer is concerned; thus we may encounter an unmanageably large state
space if we attempt to use a brute-force approach to elaborate the model.

To circumvent the difficulties, we propose an approach that solves the performability measure
through successive model translation. In particular, we first define a “performability index” Y , that
quantifies the extent to which the guarded operation with a duration 4 reduces the expected total
performance degradation, relative to the case in which guarded operation is completely absent. For
clarity and simplicity of the design-oriented model, we allow Y to be formulated at a high level of
abstraction. In order to solve for Y efficiently, we choose not to directly elaborate its formulation
or map the design-oriented model to a monolithic, state-space based model. Instead, we apply
analytic methods to translate the design-oriented model into an evaluation-oriented model that
allows us to exploit efficient solution methods, successively closing the gap between the formulation
of Y and its final solution.

More specifically, we begin with constructing a design-oriented model that formulates Y and
captures the collective effects on system performability of both performance overhead of guarded
operation and failure behavior of the software components. We subsequently translate this design-

2

oriented model, through analytic manipulation, into an evaluation-oriented form that is an aggre-
gate of constituent measures conducive to reward model solutions. Enabled by this intermediate
model, we take our final step to specify reward-structures in the composite base model, which is
built on three measure-adaptive stochastic activity network (SAN) reward models.

As with hierarchical modeling techniques (see [5, 6, 71, for example) and model-decomposition
methods (see [8, 9, lo], for example), the objective of this successive model-translation approach is
to avoid dealing with a model that is too complex to allow derivation of a closed-form solution or
has a state space that is too large to manage. The difference between those previously developed
techniques and our approach is that we emphasize translating a model progressively until it reaches
a form that is a simple function of “constituent reward variables,” each of which can be directly
mapped to a reward structure for solution.

While the goal of the model-translation approach is clear, a complete roadmap of the translation
is typically not available when the process begins. As described in Sections 3 and 4, as translation
progresses, we are able to learn additional mathematical properties and implications of the behavior
of the system in question. By discovering them along the path of translation, we acquire ideas for
efficient model construction and solution. This is an advantage of the successive model-translation
approach, because it supports performability studies of engineering problems whose mathematical
properties and/or implications may not be obvious before we translate the problem formulation.
Our study also shows that such a model-translation approach naturally facilitates the application
of behavioral-decomposition and measure-adaptive techniques for achieving solution efficiency.

The next section provides a review of the GSU methodology and guarded operation. Sec-
tion 3 defines and formulates the performability measure. Section 4 describes how we translate
a design-oriented model into an evaluation-oriented model, followed by Section 5, which shows
how the reward structures are specified in SAN models. Section 6 presents an analysis of optimal
guarded-operation duration. The paper is concluded by Section 7, which summaries what we have
accomplished.

2 Review of Guarded Software Upgrading

The development of the GSU methodology is motivated by the challenge of guarding an embedded
system against the adverse effects of design faults introduced by an onboard software upgrade [l, 2}.
The performability study presented in this paper assumes that the underlying embedded system
consists of three computing nodes. (This assumption is consistent with the current architecture of
the Future Deliveries Testbed at JPL1.) Since a software upgrade is normally conducted during a
non-critical mission phase when the spacecraft and science functions do not require full computation
power, only two processes corresponding to two different application software components are
supposed to run concurrently and interact with each other. To exploit inherent system resource
redundancies, we let the old version, in which we have high confidence due to its sufficiently long

‘More recently, we have extended the error containment and recovery algorithms so that the methodology can
serve a more general class of distributed embedded systems [ll].

3

onboard execution time, escort the new-version software component through two stages of GSU,
namely, onboard validation and guarded operation, as illustrated in Figure 1.

I I
I (Servicing mission) I (Shadow-mcde execution) I Old -1111 1-1 (Retired)

Version I
I I I

I (Extended testing)
(Uploaded)

New
Version I I

I
I I

Onboard upgrade begins
t

I

f
e

Next onboard upgrade

Figure 1: Onboard Guarded Software Upgrading

Further, we make use of the third processor, which would otherwise be idle during a non-
critical mission phase, to accommodate the old version such that the three processes (i.e., the two
corresponding to the new and old versions, and the process corresponding to the second application
software component) can be executed concurrently. To aid in the description, we introduce the
following notation:

pnew The process corresponding to the new version of an application software compo-
nent.

The process corresponding to the old version of the application software compo-
nent.

The process corresponding to another application software component (which is
not undergoing upgrade).

Pi'1d

P2

The first stage of GSU (onboard validation), which can be viewed as extended testing in an
actual space environment, starts right after the new version is uploaded to the spacecraft. During
this stage, the outgoing messages of the shadow process Pyw are suppressed but selectively logged,
while Pyw receives the same incoming messages that the active process P7ld does. Thus, Pyw and
P:ld can perform the same computation based on identical input data. By maintaining an onboard
error log that can be downloaded to the ground for validation-results monitoring and Bayesian-
statistics reliability analyses (as suggested by a number of research literatures, see [12], for example),
we can make decisions regarding how long onboard validation should continue and whether Py"
can be allowed to enter mission operation. If onboard validation concludes successfully, then Pyw
and P:ld switch their roles to enter the guarded operation stage. The time to the next upgrade 0
is determined upon the completion of onboard validation, according to 1) the planned duty of the
flight software in the forthcoming mission phases, and 2) the quality of the flight software learned
through onboard validation.

4

During guarded operation, Pyw actually influences the external world and interacts with process
P2 under the escort of the MDCD error containment and recovery protocol, while the messages of
P?ld that convey its computation results to P2 or external systems (e.g., devices) are suppressed.
We call the messages sent by processes to external systems and the messages between processes
ex te rna l messages and i n t e r n a l messages, respectively.

Because the objective of the MDCD protocol is to mitigate the effect of residual software design
faults, we must ensure consistency among different processes’ views on verified correctness (validity)
of process states and messages. Accordingly, the MDCD algorithms aim to ensure that the error
recovery mechanisms can bring the system into a global state that satisfies validity-concerned
global state consistency and recoverability. The key assumption used in the derivation of the
MDCD algorithms is that an erroneous state of a process is likely to affect the correctness of its
outgoing messages, while an erroneous message received by an application software component will
result in process state contamination [13]. Accordingly, the necessary and sufficient condition for a
process to establish a checkpoint is that the process receives a message that will make the process’s
otherwise non-contaminated state become potentially contaminated. In order to keep performance
overhead low, the correctness validation mechanism, acceptance test (AT), is only used to validate
external messages from the active processes that are potentially contaminated. By a “potentially
contaminated process state,” we mean 1) the process state of Pyw that is created from a low-
confidence software component, or 2) a process state that reflects the receipt of a not-yet-validated
message that is sent by a process when its process state is potentially contaminated.

Figure 2 illustrates the behavior of the MDCD protocol. The horizontal lines in the figure
represent the software executions along the time horizon. Each of the shaded regions represents an
execution interval during which the state of the corresponding process is potentially contaminated.
Symbols mij and Mik denote, respectively, the j t h internal message and kth external message sent
by process Pi.

pold
1

P2

- Message passing that
triggers checkpointing

Message passing that does
not trigger checkpointing

I checkpoint
Interval during which process state
is potentially contaminated

---b @ Acceptance test

Figure 2: MDCD Protocol for Guarded Operation

5

Upon the detection of an erroneous external message, P7ld will take over Prw7s active role and
prepare to resume normal computation with P2. By locally checking its knowledge about whether
its process state is contaminated, a process will decide to roll back or roll forward, respectively.
After a rollback or roll-forward action, P:ld will “re-send” the messages in its message log or
further suppress messages it intends to send, based on the knowledge about the validity of Pyw7s
messages. After error recovery (which marks an unsuccessful but safe onboard upgrade), the system
goes back to the normal mode (under which safeguard functions, namely, checkpointing and AT,
are no longer performed) until the next scheduled upgrade. An undetected, erroneous external
message2 will result in system failure, meaning that the system will become unable to continue
proper mission operation. On the other hand, as the MDCD algorithms allow error recovery to
be trivial [2], we anticipate that the system will recover from an error successfully so long as the
detection is successful.

If no error occurs during 4, then guarded operation concludes and the system goes back to
normal mode at 4 (see Figure 1). Note that while the time to the next scheduled onboard upgrade
8 is chosen via a software engineering decision, the duration of guarded operation 4 is a design
parameter that influences system performance and dependability. The central purpose of this
paper is to study how to evaluate a performability measure for determining an optimal 4. In the
section that follows, we define and formulate the performability measure.

3 Performability Measure

3.1 Definition

We define a performability measure that will help us to choose the appropriate duration of guarded
operation 4. More specifically, 4 will be determined based on the value of the performability mea-
sure that quantifies the total performance degradation reduction resulting from guarded operation.

As mentioned in Section 1, we consider two types of performance degradation, namely:

1) The performance degradation caused by the performance overhead of checkpoint establish-
ment and AT-based validation, and

2) The performance degradation due to design-fault-caused failure.

Clearly, a greater value of 4 implies 1) a decrease in the performance degradation due to
potential system failure caused by residual design faults in the upgraded software component, and
2) an increase in the performance degradation due to the overhead of checkpointing and AT. If
we let W, denote the amount of “mission worth,” which is quantified by the system time that is
devoted to performing application tasks rather than safeguard activities and accrued through 8
when the duration of guarded operation (G-OP) is 4, then Wo refers to the total mission worth
accrued through 8 for the boundary case in which the G-OP mode is completely absent (having a

2For simplicity, in the remainder of the paper, we use the term “error” to refer to an erroneous external message
(to a device).

6

zero duration). On the other extreme, if the system is perfectly reliable, then it would not require
guarded operation and would thus be free of either type of performance degradation described
above. We view this extreme case as the “ideal case” and let its total mission worth (accrued
through 8) be denoted by WI.

It is worthwhile noting that the difference between the expected values of WI and W, can be
regarded as the expected mission worth reduction, or the expected total performance degradation
(from the ideal case) that the system experiences through 8 when the G-OP duration is 4. Similarly,
the difference between the expected values of WI and Wo represents the expected total performance
degradation the system experiences through 8 when the G-OP mode is absent throughout 8. It
follows that if E[WI] - E[W4] < E[WI] - E[W4t], then q5 can be considered a better choice than
4’. Accordingly, we let the performability measure take the form of a performability index Y ,
that quantifies the extent to which a G-OP duration q5 reduces the expected total performance
degradation, relative to the case in which the G-OP mode is completely absent. More succinctly,
Y is the ratio of the difference between E[WI] and E[Wo] to that between E[WI] and E[W4]:

Based on the above discussion, we can anticipate performability benefit from a guarded o p
eration that is characterized by a duration q5 when E[WI] - E[W+] is less than E[WI] - E[Wo].

More precisely, Y > 1 implies that the application of guarded operation will yield performability
benefit with respect to the reduction of total performance degradation. On the other hand, Y 5 1
suggests that guarded operation will not be effective for total performance degradation reduction.
We formulate E[WI], E[Wo], and E[Wb] in the next subsection.

3.2 Formulation

As explained above, we choose to quantify “mission worth” in terms of the system time devoted
to performing application tasks (rather than safeguard activities) that is accrued through mission
period [0,8]. Further, the system behavior described in Section 2 suggests that an error that
propagates to an external system will nullify the worth of that mission period. Since neither of
the two cases, the ideal case and the case in which the G-OP mode is completely absent, involves
safeguard activities, WI and Wo can be formulated in a straightforward fashion:

28 if no error occurs throughout 8
0 otherwise

Wo= { (3)

Note that the coefficient 2 in the above equations is due to the fact that in the avionics system
we consider, only two application processes actively service the mission during 8. (For the cases to
which WI and WO correspond, the two processes will always be Pf” and Pz.)

7

To help to formulate an expression for W,, we group the possible behaviors (i.e., sample paths)
that the system may take into several categories. In particular, since we do not make the assumption
that P;ld and P2 are perfectly reliable and AT has a full coverage, we must consider situations where
the system fails during guarded operation, or fails after error recovery. This leads us to define three
classes of sample paths: i) those in which no error occurs, and the system thus goes through the
upgrade process successfully (called S1 below), ii) those in which an error occurs during (0 , 4] , and
the system successfully recovers (called S2 below), and iii) those involving the occurrence of an
error from which the system cannot recover (no mission worth is accumulated, so these paths are
not considered in the expression of mission worth). More specifically, we define sets of sample paths
S1 and S2 as follows:

Sl) No error occurs by the end of 4, so the system enters the normal mode with Pyw and P2 in
mission operation after 4; the upgraded system subsequently goes through the period (8 - 4)
successfully.

S2) An error occurs and is detected by Pyw or P2 at T, 0 < T 5 4, so that error recovery brings
the system into the normal mode with P?ld and P2 in mission operation after T; the recovered
system subsequently goes through (8 - T) successfully.

We let pt,l and pt,2 denote the fractions of time during which Pyw and P2 (respectively) make
forward progress (rather than performing safeguard functions), given that the system is under the
G-OP mode until t (t 5 4). Then, W, can be defined as follows:

(p4, l + p4,2)4 + 2(8 - 4)

0 otherwise

if system experiences a sample path in S1

w,= { y((p7,1 + p7,2)7 + 2(0 - T)) if system experiences a sample path in S2 (4)

where the coefficient y (0 < y < 1) is the discount factor that takes into account for the additional
mission worth reduction for an unsuccessful but safe onboard software upgrade, relative to the case
in which the upgrade succeeds. We can define y according to the implication of S2 on the system
in question. For clarity of illustration, we will postpone our description of how we define y until
Section 6, in which we present the evaluation experiments and results.

In order to solve for Y, we first define a stochastic process, X = { X , I t E [0, e] } , to represent
the dynamics of the distributed embedded system that is undergoing an onboard upgrade. As
mentioned in Section 2, when an error goes undetected, the system will lose its ability to continue
mission operation, implying an absorbing state. If we let d1 denote the set of states of X in which
no error has occurred in the system, then according to the definition of Wo,

E[Wo] = 28 P(X,g E d1, when G-OP duration is 0). (5)

Further, if we let W$' = (p , , ~ + p+,2)45 + 2(8 - 4) and = y((p7,1 + p7,2)7 + 2(8 - T)) (see
Equation (4)), then by the theorem of total expectation,

8

E[W+] = E[W,s’] + E[W,s2].

By definition, the stochastic process X will be in a state in A1 at 0 if the system has a G-OP
duration + and experiences a sample path in S1. It follows that

EIW$l] = ((p+, i + p+,2)+ + 2(0 - 4)) P(Xe E -41, when G-OP duration is +) (7)

We notice that the application-purpose message-passing events that trigger checkpointing and
AT (which dominate the performance overhead) are significantly more frequent than the fault-
manifestation events. Moreover, the mean time between message-passing events is only seconds in
length, whereas a reasonable value of + will be in the range of hundreds or thousands of hours.
Hence, we can assume that the system reaches a steady state with respect to the performance-
overhead related events before an error occurs or the G-OP duration ends. Thus, p t , ~ and pt,2 can
be regarded as steady-state measures p1 and p2, respectively. Consequently, Equation (7) becomes:

E[WZs’] = ((pi + p2)4 + 2(0 - +)) P(Xe E Ai, when G-OP duration is +) (8)

Although combinatoric-form expressions can be derived at the design-oriented level for E [WO]
and E[WZ1], the complexity of sample paths in S2, coupled with the fact that r is a random variable
that can assume a continuum of values, precludes the possibility of deriving a combinatoric-form
expression for E[WP]. Accordingly, we let h be the probability density function (pdf) of r and f
denote the pdf of the time to system failure that occurs after error recovery (when Pi’‘d and P2 are
in the mission operation). Then, E[Wi2] can be formulated as follows:

To this end, we arrive at a stage in which Y is expressed in ‘‘conceptual mathematical terms”
that are design-oriented and require further elaboration. In particular, most of the terms in Equa-
tions (5), (8), and (9), are not ready to be solved for directly. If we chose a “non-state-space
approach” and began with elaborating h and f, then Equation (9) would involve a very compli-
cated convolution that we would be unable to solve without excessive approximation. Whereas if
we wish to solve those equations using reward model solution techniques and attempt to build a
monolithic model for this purpose, there would be no guarantee that the resulting model could sup-
port the evaluation of those equations; even if support is available when the model is constructed in
a comprehensive way, the complexity of the model may prevent us from obtaining numerical results
efficiently. Those factors collectively suggest that rather than take an approach that deals with a
complex model using numerical algorithms, we should endeavor to avoid or reduce model complex-
ity by translating the design-oriented model into a form for which we are able to exploit techniques
such as behavioral decomposition and hierarchical composition of reward-model solutions.

9

4 Successive Model-Translation Approach

4.1 Translation toward Reward Model Solutions

With the motivation described at the end of the previous section, we develop an approach that
translates the design-oriented model step by step until it reaches a stage at which the final solution
of Y becomes a simple function of "constituent measures," each of which can be directly mapped
to a reward structure. Figure 3 illustrates the process of successive model translation.

Performability Index

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(Design-oriented) EWol A i \ E[W,]=2e

E [W,I

Figure 3: Successive Model Translation

As described in Section 3.2 and shown in Figure 3, the design-oriented formulation of Y results
in the following mathematical terms:

0 P(X0 E AI, when G-OP duration is 0) in Equation (5) .

0 P(X0 E AI, when G-OP duration is 4) , in Equation (8).

0 p l , p2 in Equations (8) and (9).

0 The double integral in Equation (9), i.e., J'((p1 + p2)r + 2(8 - r))h(r) (1 - J," f(z) dz) d r .

Since these terms are at a high level of abstraction and cannot be solved directly, we perform
translation by applying analytic techniques to realize model decomposition and measure parti-
tion/conversion. It is possible to specify a monolithic model to represent the stochastic process X

10

for solving P(X0 E d1, when G-OP duration is 0) and P(X0 E d1, when G-OP duration is +), if
we choose to use a model type that is highly expressive, such as stochastic Petri nets or stochastic
activity networks. However, as mentioned previously, the complexity of the model would make
it impossible for us to achieve solution efficiency, even if the model is comprehensive enough to
support the measure. Therefore, we let the stochastic process X be partitioned into two simpler
processes, namely, XI = {Xi 1 t E [O,+] } and X” = {X! I t E [O,O]}. The former represents
the system behavior during the pre-designated G-OP interval3. The latter can represent the sys-
tem behavior under the normal mode in different situations: 1) after G-OP completes successfully,
and 2) when the G-OP mode is completely absent during [O,O]. Furthermore, with a reasonably
high messagesending rate, the likelihood that dormant error conditions will remain in a process
state after error recovery is so low that the effect on system behavior is practically negligible [13].
Therefore, XN can also represent the system behavior after the predesignated G-OP interval and
provide a good approximation for dependability measures, for the case in which an error occurs
and is detected in the system when it is under the G-OP mode.

Based on the decomposition, we are able to solve for P(X,g E -41, when G-OP duration is 0)
and P(X,g E AI, when G-OP duration is 4) in a way that is significantly more efficient. More
specifically, the former can be converted into P(X[E dy) while the latter can be translated as
the product of P (X i E d i) and P(X[-b E dy), if we let A’, and dy denote, respectively, the
sets of states of XI and X“ in which no error has occurred in the system. Consequently, each of
those transient, instant-of-time measures can be solved by defining a reward structure in one of the
decomposed models, as illustrated in Figure 3.

As explained in Section 3.2, we treat p1 and pz as steady-state instant-of-time measures. This
suggests that we can evaluate these two constituent measures in a reward model that represents the
performance aspects of the stochastic process XI (and has no absorbing states). In other words,
as illustrated in Figure 3, p1 and p2 are ready for reward model solutions, requiring no further
translation.

Clearly, it is more challenging to translate the double integral in Equation (9) into a form that
is conducive to a reward model solution. Hence, we use judgment and make decisions regarding
how to proceed along the path of translation. Step by step, as described in detail in Section 4.2, the
double integral is converted into a form that is an aggregate of constituent measures, namely, p1, p2,

J$ h (~) dT, J$ ‘rh(r) dr, J$ J$ h(~)f(x) dx dr, and Ji f(x) dx. For each of those measures, we can
define a reward structure in one of the decomposed models that represents X’ or X“ and supports
dependability or performance-overhead measures (as described in the preceding paragraphs). By
solving the above constituent reward variables individually, we can evaluate the translated form of
the double integral in an efficient fashion.

In summary, the translation process described thus far converts the terms at the design-oriented
level into the following solvable constituent reward variables (see also Figure 3):

3The behavior of a recovered system within the interval (T,+] can also be represented by X’, if an error occurs
and is detected at T (T 5 4).

11

To this end, it becomes apparent that we will be able to solve for Y if we construct the following
three reward models at the base-model level:

RMGd A reward model that represents the system behavior during the predesignated
G-OP interval and supports dependability measures.

RMNd A reward model that represents the system behavior under the normal mode
and supports dependability measures.

R M G ~ A reward model that represents the system behavior under the G-OP mode and
supports performance-overhead measures.

Details about the mapping between the resulting constituent measures and the reward structures
in RMGd, RMNd, and R M G ~ are provided in Section 5.

4.2 Translation of E [W 3

While we have explained in a fairly detailed way other aspects of the translation process, we now
provide a detailed description of the successive translation of the double integral in the expression
for E[WZ2] (see Equation (9)). We begin with rearranging its terms:

If further, we rearrange the first term in the parentheses of Equation (lo), we have

d d d J, (28 - (2 - (PI + p2)) ~ 7) d r = 20 J, h(7) d r - (2 - (P1 + P2)) 1 T h w d r (11)
0

Note that T has a mixture distribution [14]. This is because h(r) equals zero for r > q5 and
thus lim.r--roo H (r) < 1. Clearly, J$ h(r) d r is the probability that an error occurs and is detected
by q5 when the G-OP duration is 4. However, as mentioned earlier, the complexity of the system
behavior, makes it very difficult to derive h and compute the integrals without an excessive amount
of approximation. Therefore, we choose to use reward model solution techniques and assume that
rewards are associated with the states of XI . More specifically, we let A; denote the set of states (of
X ') in which an error has occurred and been successfully detected, J$ h(r)dr can then be evaluated

12

as the expected instant-of-time reward:

J," h(r) d r = P (X i E d;)

In other words, with a state-space based model X', we can solve J$ h(r) d r by assigning a
reward rate of 1 to all states in dh and a reward rate of zero to all other states, and computing the
expected reward at 4.

Recall that the system behavior implies that 1) a state in which the system encounters an
undetected error is absorbing, and 2) a successful error detection will result in error recovery that
brings the system back to the normal mode under which checkpointing and AT (the error detection
mechanism) will no longer be performed. In turn, this suggests that mean time to error detection
J$rh(r)dr is a meaningful measure, and it can have a reward model solution. Accordingly, if
we let di denote the set of states in which no error has been detected, and d& denote the set of
(absorbing) states in which an error has occurred and caused a system failure due to unsuccessful
error detection (thus d& is a proper subset of d;), we have

which implies that, to solve J$ rh(r) d r , we can assign a reward rate of 1 to all states (of X') in
di, a reward rate of -1 to all states in d&, and a reward rate of zero to all other states, and then
compute the expected reward accumulated through 4. Thus, the integrals in Equation (11) (and
thus the first term of Equation (10)) can be solved.

We manipulate the second term in Equation (10) in a similar fashion and begin with rearranging
the terms:

We neglect the term (2 - (p1 + p 2)) J$J:rh(r) f (z)dxdr because its value differs from those
of O and E[WZ2] by orders of magnitude. Note also that the expression J$ J: h(r) f(z) d z d r is the
probability that an error occurs and is detected when the system is under the G-OP mode but the
system fails due to another error that occurs between the successful recovery and the next upgrade.
Nonetheless, the area of the integration goes across the boundary between the predesignated G-
OP interval [0 ,4] and the interval [@, O] during which the system (that completes G-OP safely)
continues mission operation under the normal mode. This prevents us from obtaining a reward
model solution based on the decomposed submodels RMGd and RMNd. By closely inspecting the

13

area of the integration, as shown in Figure 4(a), we recognize that we can change the coordinates
of the integrals such that the orientation of the integration area will be converted accordingly, as
shown in Figure 4(b). In turn, the converted integration area suggests that the result of Equation
(14) can be broken down into two terms:

28 l4 le h (r) f (x) dx d r

X t = t
x = e I

Figure 4: Translating the Area of Integration

The second term of Equation (15) can thus be expressed as the product of two probabilities,
namely, J$ h(r) d r and Ji f(x) dx (see Equation (16)). While we have already provided a reward
model solution for the former (see Equation (12)), we recognize that the latter is the probability
that the recovered system will fail due to the occurrence of another error at a time instant in [4, e].
As explained in Section 4.1, we can obtain a good approximation for J4 f (x) dx by defining a reward
structure in RMNd (which represents the dependability aspects of XI’) and computing the expected
instant-of-time reward at (8 - 4).

On the other hand, the first term in Equation (15) is not in a form that can be interpreted in
a straightforward way. We therefore “change back” the coordinates for this individual constituent
measure so that its area of integration is translated from the darker region (with a triangular shape)
in Figure 4(b) back to the darker region in Figure 4(a). Thus, the second term of Equation (10)
finally becomes:

e

14

The first term (in the above equation) can now be interpreted in a straightforward manner
as the probability that an error is detected when the system is under the G-OP mode and the
recovered system fails by 4 (under the normal mode) due to the occurrence of another error. A
reward structure can then be defined accordingly in the reward model RMGd (which represents
the dependability aspects of X’). To this end, we can evaluate each of the constituent measures
of E[WJ2] by mapping it to a reward structure in RMGd, RMNd, or RMG,. In other words, if we
plug the results of Equations (11) and (16) into Equation (lo), E[Wy] becomes ready to be solved
using reward model solution techniques.

5 SAN Reward Model Solutions for Constituent Measures

We use stochastic activity networks to realize the final step of model-translation. This choice is
based on the following factors: 1) SANs have high-level language constructs that facilitate marking-
dependent model specifications and representation of dependencies among system attributes, and
2) the UltraSAN tool provides convenient specification capability for defining reward structures
[15], and 3) by adopting and making necessary modifications to the SAN models we developed for
our previous (separate) dependability and performance-cost studies [13, 21, we are able to use them
as the reward models RMGd, RMNd, and RMG,. In the following subsections, we review these
SAN models briefly and describe how the SAN-based reward structures are implemented.

5.1 SAN Reward Models

The rich syntax and marking-dependent specification capability of SANs allow us to specify every
aspect of the protocol precisely. However, we may encounter a state-space explosion or experience
very slow computation if we attempt to construct a monolithic model, or attempt to make a SAN
model a procedural specification of the MDCD protocol. To avoid these problems, we

1) Use three separate reward models, each of which is specified for representing the dependability
or performance-overhead related aspects of X’ or X”, as explained in Section 4.1, and

2) Minimize explicit representation of the algorithmic details, while ensuring that every aspect
of their impact on the particular measure we seek to solve (in a particular reward model) is
captured.

The SAN reward model RMGd is a modified version of the model we built for studying the
dependability gain from the use of the MDCD protocol [13]. Modifications are made so that
whether an error has been detected in the system is explicitly represented; and thus each of the
constituent measures J$ h(r) d r , J$ T ~ (T) d r , and J$ J$ h(r)f(z) dx dr can be easily mapped to a
reward structure. In model construction, we avoid modeling details about checkpoint establishment,
deletion, and rollback error recovery. Rather, by exploiting the relations among the markings of the
places that represent whether a process is actually error-contaminated and the process’s knowledge

15

about its state contamination, we are able to characterize the system’s failure behavior precisely
with respect to whether messages sent by potentially contaminated processes will cause system
failure. The detailed description of the model is omitted here but can be found in [13].

In contrast, in the SAN reward model RMG, (see Figure 5), we omit those failure-behavior-
related aspects, such as error occurrence and unsuccessful error detection [2]. Instead, we focus on
representing those conditions that would require a process to take actions that do not belong to the
category of “forward progress” (e.g., the action to establish a checkpoint, or to perform an AT).

Figure 5: SAN Reward Model for Solving Performanceoverhead Measures (RMG,)

Since its purpose is to solve p1 and p2, this reward model includes the timed and instantaneous
activities that represent the error containment actions of the protocol that are driven by the message
passing events and dynamically adjusted confidence in processes, as shown in Figure 5. In particular,
the places PloDB and P2DB represent the dirty bits of P?ld and Pa, respectively. Each of those
places may have a marking of zero or one, which can be interpreted as the confidence in the
corresponding process. The timed and instantaneous activities together precisely represent how the
MDCD checkpointing rule and AT-based validation policy are executed. For example, when being
activated, the timed activity P2XKPT indicates that P2 is engaged in a checkpoint establishment,
while the instantaneous activity P2SkipCKPT indicates that P2 is exempted from checkpointing for
a particular message receiving event, according to the MDCD checkpointing rule.

16

It is also worth noting that, due to the nature of the measure, the SAN reward model RMGd

emphasizes the effects on system dependability of the interactions between the non-ideal environ-
ment conditions and the behavior of the MDCD protocol. Accordingly, in the model construction,
we relax the design assumptions for an ideal execution environment. In contrast, the purpose of

is to evaluate the performance overhead resulting from processes’ error containment activi-
ties. Since those fault tolerance mechanisms are directly influenced by the design assumptions, the
ideal environment assumptions are preserved in this SAN reward model. The SAN model R M N ~

is rather simple and thus is not described here.

5.2 Reward Model Solutions

As a result of model translation, each of the constituent measures becomes in a form that can be
easily solved by defining a reward structure in the corresponding SAN reward model. In addition,
the UltraSAN tool provides us with a convenient way to define a reward structure by specifying a
“predicate-rate” pair [15]. Below we describe how the reward structures are specified in each of the
SAN reward models.

5.2.1 Solving Constituent Measures in R M N ~

As indicated in Figure 3 and explained in Section 4.1, three constituent measures are supposed to
be solved in the reward model RMNd, namely, P(X; E dy), P(X;+ E dy), and J: f(x) dx. In
particular, these three measures can share the following predicate-rate pair:

0 Predicate: MARK(fai1ure) == 0

0 Rate: 1

To solve P (X ; E dy) and P(X;+ E dy), we assign the fault-manifestation rate of Pyw to
the activity that represents the fault-manifestation behavior of the first software component, and
compute the expected reward values at 0 and (0 - $), respectively. As to J: f(x) dx, since it can
be treated as the probability that the recovered system (consisting of P?ld and P2) fails during the
interval [0, 0 - $1, we assign the fault-manifestation rate of P:ld to the activity that represents the
fault-manifestation behavior of the first software component, and compute the complement of the
expected reward value at (0 - $).

5.2.2

As indicated in Figure 3, the constituent measures J$ h(r) d r , J$ rh(r) d r , J$ J.. h(r)f(x) dx d r ,

and P (X i E dl,) are supposed to be evaluated in the reward model RMGd. Table 1 summarizes
how reward structures are specified and how the expected reward values are computed for solving
those measures. An explanation of those reward model solutions has been given in Section 4.

Solving Constituent Measures in RMGd

17

Table 1: Constituent Measures and SAN Reward Structures in RMGd

Measure

s$ h b) dr

Reward Type
Expected instant-of-time reward at 4 MARK(detected)==l &&

MARK(f ailure)==O
1

I

MARK(detected1 ==0 1 1 J$rh(r) dr

J$ J: h(r)f(x) dx dr

P(X$ E di)

Expected accumulated interval-of-
time reward for [0, 451

Expected instant-of-time reward at 4

Expected instant-of-time reward at 4

MARK (failure == 1 I 1
MAFLK(detected)==O &&

MARK (detected)==l &&

MARK(detected)==O &&
MARK(f ailure)==o

-1

5.2.3

As indicated in Figure 3, two constituent measures are supposed to be solved in the reward model
R M G ~ , namely, p1 and p2. For simplicity and clarity of the specification of the predicate-rate
pairs, we instead solve for (1 - p1) and (1 - p ~) , which are the performance overhead of Ppw and
P2, respectively. Table 2 enumerates the reward type and predicate-rate pair for each of the two
measures.

Solving Constituent Measures in RMG,

Measure
1 -p1

1 - p 2

Reward Type Predicate-Rate Pair
Expected instant-of-time reward at MARK(P1nExt) ==1 1
steady state
Expected instant-of-time reward at (MARK(P1nInt)==1 && 1
steady state MARK(P2DB) == 0) I I

(MARK (P2Ext 1 ==1 &&
MARK(P2DB) == 1)

Note that the predicate-rate pair specified for (1 -p2) involves more conditions. This is because,
unlike the process Ppw which is always considered as potentially contaminated when the system
is under the G-OP mode, we dynamically adjust the confidence in Pa and perform checkpointing
and AT accordingly.

6 Evaluation Results

Applying the SAN reward models described in Section 5 and UltraSAN, we evaluate the performa-
bility index Y. Before we proceed to discuss the numerical results, we define the following notation:

18

Pnew

Potd
C

x
Pext

Q

B

e
10000 1200

Fault-manifestation rate of the process corresponding to the newly upgraded soft-
ware version.

Fault-manifestation rate of a process corresponding to an old software version.

Coverage of an acceptance test.

Messagesending rate of a process.

Probability that the message a process intends to send is an external message.

Acceptance- t est completion rat e.

Checkpoint-establishment completion rate.

h e w Pold c pext Q p
lop4 0.95 0.1 6000 6000

We begin with conducting a study of the optimality of the G-OP duration 4, considering the
impact of the fault-manifestation rate of the upgraded software component. Specifically, we use
the parameter values shown in Table 3, in which all the parameters involving time presume that
time is quantified in hours. Accordingly, A = 1200 means that the time between message sending
events (for an individual process) is 3 seconds; similarly, Q = 6000 and p = 6000 imply that the
mean time to the completion of an AT-based validation and the mean time to the completion of
a checkpoint establishment are both 600 milliseconds. Further, we let the y (see Equation (4))

be a decreasing function of T , the mean time to error detection. More succinctly, y = 1 - 5 .
This function is defined based on the following consideration. Safeguard activities would no longer
be performed after r when error detection brings the system back to the normal mode with Pi'1d
and P2 in mission operation; since that implies an unsuccessful (but safe) onboard upgrade, the
performance cost paid for the safeguard activities up to r would yield an additional reduction of
mission worth, relative to the case of a successful onboard upgrade.

-

The numerical results from this study are displayed by the curve with solid dots in Figure 6.
The values of the performability index indicate that the optimal duration of the G-OP mode for
this particular setting is 7000 hours, which yields the best worth of the mission period 8, due to the
greatest possible reduction of expected total performance degradation. This implies that for this
particular setting, a 4 smaller than 7000 would lead to a greater expected performance degradation
due to increased risk of potential design-fault-caused failure. On the other hand, if we let 4 be
larger, then the increased performance degradation due to performance overhead would more than
negate the benefit from the extended guarded operation.

By decrementing the fault-manifestation rate of P;" (Pnew) to 0.5 x (while letting other
parameter values remain the same), we obtain another set of values of Y , as illustrated by the
companion curve marked by hollow dots in Figure 6. The two curves together reveal that the
optimality of 4 is very sensitive to the reliability of the upgraded software component. In particular,

19

we observe that when pnew is decremented from the optimal q5 is dropped from
7000 to 5000 (hours), even though the performance costs of safeguard activities remain low (thus p1

and p2 remain high, and equal 0.98 and 0.95, respectively). While it is quite obvious that a smaller
pneW will favor a shorter duration of the G-OP mode, this study confirms the relation between the
two system attributes and helps us to recognize the sensitivity of this relation.

to 0.5 x

I
- 1.5
w

X
a,

r:
H

1.4 -1
x
2 1.3
.d a m

0
u 4
k
al

1.2

a 1.1

1
0 1000 2000 3000 4000 5000 6000 7000 8 0 0 0 900010000

Guarded-Operation Duration (4))

Figure 6: Effect of Fault-Manifestation Rate on Optimal G-OP Duration (8 = 10000)

In the next study, we change the values of a! and p to 2500 (i.e., the times to completions of
an AT-based validation and a checkpoint establishment become 1440 milliseconds, up from 600
milliseconds in the previous study), implying that the performance costs for safeguard activities
become higher. The evaluation results are shown by the curve with tiny hollow triangles in Figure 7,
in which we duplicate the curve with solid dots from Figure 6 for comparison. With the decremented
values of a and 0, p1 and p2 are reduced to 0.95 and 0.90, respectively. As shown by the curve
with the tiny hollow triangles, the optimal q5 for this case is 6000, down from 7000. The change
of the optimal q5 is again a result of the tradeoffs between the two types of expected performance
degradation. More specifically, this change is due to the factor that the increased performance
overhead tends to further negate dependability benefits, and thus suggests an earlier cutoff line for
guarded operation.

Note that so far we have used 8, the time to the next upgrade, as a constant. However, as
described in Section 2, 8 is indeed chosen based on a software engineering decision (at the time
onboard validation completes); the decision depends upon at least two factors: 1) the planned duty
of the flight software in the forthcoming mission phases, and 2) the quality of the flight software
learned through onboard validation. Accordingly, we analyze the effects of the value of 8 on the

20

1.6

- 1.5 *
v

2

.: 1.3

E 1.2

a 1.4
d

x
H

rl
-d a
(d

0
%I
Ll
a,
P4 1.1

1

I I I I I I I I I

Y I I , I
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

Guarded-Operation Duration ($1

Figure 7: Effect of Performance Overhead on Optimal G-OP Duration (0 = 10000)

optimality of 4. Specifically, we repeat the study that yields the results shown in Figure 6, by
letting 8 be reduced to 5000 hours. The resulting curves are displayed in Figure 8.

1.35 1 t I I I I I I I

1.3

*
v

1.25
5
2 1.2
a

x .< 1.15
d
-4

-8 1.1
E
0

a,
PI

1.05

1
pnew = 0.0001 -

pnew = 0.00005 -
0.95 ’ I , I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Guarded-Operation Duration (4)

Figure 8: Effect of Fault-Manifestation Rate on Optimal G-OP Duration (8 = 5000)

21

It is interesting to observe that, while other parameter values remain the same (meaning that
the performance and dependability attributes of the system itself do not differ from the previous
study), the reduction of 6 significantly changes the values for the optimal 4. Specifically, the
optimal values of 4 for the cases in which pnew equals go down to 2500 and
2000, respectively. This can be understood by considering that reliability is generally a decreasing
function of time, for a system without maintenance. More precisely, when the anticipated time to
the next upgrade becomes shorter, the likelihood that the system will fail before the forthcoming
upgrade activity decreases, permitting guarded operation to end at an earlier point to minimize the
expected total performance degradation. By inspecting the results of the constituent measures that
are available to us, namely, P (X i E A;) and J$ h(r) d r , we are able to validate this explanation.

and 0.5 x

7 Concluding Remarks

We have conducted a model-based performability study that analyzes the guarded-operation du-
ration for onboard software upgrading. By translating a design-oriented model into an evaluation-
oriented model, we are able to reach a reward model solution for the performability index Y that
supports the decision on the duration of guarded operation.

The model-translation approach offers us flexibility. In particular, the approach suggests to us
that model translation can be done within the same level or across different levels of abstraction,
depending upon the application. In addition, since its goal is to transform the problem of solv-
ing a performability measure into that of evaluating constituent reward variables, the successive
model-translation approach naturally enables us 1) to explore the imbedded possibilities of applying
efficient model construction and solution strategies, including reward model solution techniques,
behavioral decomposition, measureadaptive model construction, and hierarchical composition; and
2) to access the results of the constituent measures to gain more insights from a model-based per-
formability evaluation.

Moreover, as noted earlier and exemplified by our performability study, we make decisions on
how to further translate a model based on intermediate results obtained during successive model
translation, as opposed to having a complete picture of the hierarchy prior to model translation.
In other words, although our model-translation approach can be viewed as a top-down process,
judgment and decisions on how to proceed are made in an “on-the-fly” fashion. This is an advantage
of the successive model-translation approach, because it enables us to solve engineering problems
whose mathematical properties and/or implications may not become apparent until we elaborate
the formulation of the problem to a certain degree. Our current effort is directed toward continuing
this investigation by carrying out more case studies in further depth. In addition, as we have
developed the GSU middleware and have been in the process of porting it to the Future Deliveries
Testbed at JPL, we intend to experimentally validate the parameter values used in our analysis
and the results of the constituent measures.

22

References

[l] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W. H. Sanders, “On low-cost error containment
and recovery methods for guarded software upgrading,” in Proceedings oj the 20th International

Conference on Distributed Computing Systems (ICDCS 2000), (Taipei, Taiwan), pp. 548-555,
Apr. 2000.

[2] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W. H. Sanders, “Low-cost error containment
and recovery for onboard guarded software upgrading and beyond,” IEEE Trans. Computers,

vol. 51, Feb. 2002.

[3] J. F. Meyer, “On evaluating the performability of degradable computing systems,” IEEE

Trans. Computers, vol. C-29, pp. 720-731, Aug. 1980.

[4] J. F. Meyer, “Performability: A retrospective and some pointers to the future,’’ Performance

Evaluation, vol. 14, pp. 139-156, Feb. 1992.

[5] R. A. Sahner and K. S. Trivedi, “A hierarchical, combinatorial-Markov method of solving
complex reliability models,” in Proc. ACM-IEEE Computer Society 1986 Fa1 1 Joint Computer

Conference, (Dallas, TX), pp. 817-825, Nov. 1986.

[6] M. Veeraraghavan and K. S. nivedi, “Hierarchical modeling for reliability and performance
measures,” in Concurrent Computations (S. K. Tewsburg, B. W. Dickinson, and S. C. Schwartz,
eds.), pp. 449-474, Plenum Publishing Corporation, 1988.

[7] M. Malhotra and K. S. Trivedi, “A methodology for formal expression of hierarchy in model
solution.,” in 5th International Workshop on Petri Nets and Performance Models, (Toulouse,
France), pp. 258-267, Oct. 1993.

[8] J. B. Dugan, K. S. Trivedi, M. K. Smotherman, and R. M. Geist, “The hybrid automated
reliability predictor,” AIAA Journal oj Guidance, Control and Dynamics, vol. 9, no. 3, pp. 319-
331, 1986.

[9] R. Geist, “Extended behavioral decomposition for estimating ultrahigh reliability,” IEEE

Trans. Reliability, vol. R-40, pp. 22-28, Apr. 1991.

[lo] G. Ciardo and K. S. Trivedi, “A decomposition approach for stochastic reward net models,”
Performance Evaluation, vol. 18, no. 1, pp. 37-59, 1993.

[ll] A. T. Tai, K. S. Tso, W. H. Sanders, L. Alkalai, and S. N. Chau, “Low-cost flexible software
fault tolerance for distributed computing,” in Proceedings oj the 12th International Symposium

on Software Reliability Engineering (ISSRE 2001), (Hong Kong, China), pp. 148-157, Nov.
2001.

23

[12] B. Littlewood and D. Wright, “Stopping rules for the operational testing of safety-critical
software,” in Digest oj the 25th Annual International Symposium on Fault- Tolerant Computing,

(Pasadena, CA), pp. 444-453, June 1995.

[13] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W. H. Sanders, “On the effectiveness of
a message-driven confidence-driven protocol for guarded software upgrading,” Performance

Evaluation, vol. 44, pp. 211-236, Apr. 2001.

[14] R. A. Sahner, K. S. Trivedi, and A. Puliafito, Performance and Reliability Analysis oj Com-

puter Systems An Example-Based Approach Using the SHARPE Software Package. Boston,
MA: Kluwer Academic Publishers, 1995.

[15] W. H. Sanders, W. D. Obal 11, M. A. Qureshi, and F. K. Widjanarko, “The UZtraSAN modeling
environment,” Performance Evaluation, vol. 24, no. 1, pp. 89-115, 1995.

24

